Datasheet Texas Instruments LMH6626MA/NOPB — 数据表
制造商 | Texas Instruments |
系列 | LMH6626 |
零件号 | LMH6626MA/NOPB |
单/双超低噪声宽带运算放大器8-SOIC -40至125
数据表
LMH6624 and LMH6626 Single/Dual Ultra Low Noise Wideband Operational Amplifier datasheet
PDF, 1.9 Mb, 修订版: G, 档案已发布: Dec 19, 2014
从文件中提取
价格
状态
Lifecycle Status | Active (Recommended for new designs) |
Manufacture's Sample Availability | Yes |
打包
Pin | 8 | 8 |
Package Type | D | D |
Industry STD Term | SOIC | SOIC |
JEDEC Code | R-PDSO-G | R-PDSO-G |
Package QTY | 95 | 95 |
Carrier | TUBE | TUBE |
Device Marking | 26MA | LMH66 |
Width (mm) | 3.91 | 3.91 |
Length (mm) | 4.9 | 4.9 |
Thickness (mm) | 1.58 | 1.58 |
Pitch (mm) | 1.27 | 1.27 |
Max Height (mm) | 1.75 | 1.75 |
Mechanical Data | 下载 | 下载 |
参数化
2nd Harmonic | 65 dBc |
3rd Harmonic | 80 dBc |
@ MHz | 10 |
Acl, min spec gain | 10 V/V |
Additional Features | Decompensated |
Architecture | Bipolar,Voltage FB |
BW @ Acl | 80 MHz |
CMRR(Min) | 87 dB |
CMRR(Typ) | 95 dB |
GBW(Typ) | 1600 MHz |
Input Bias Current(Max) | 20000000 pA |
Iq per channel(Max) | 16 mA |
Iq per channel(Typ) | 12 mA |
Number of Channels | 2 |
Offset Drift(Typ) | 0.25 uV/C |
Operating Temperature Range | -40 to 125 C |
Output Current(Typ) | 100 mA |
Package Group | SOIC |
Package Size: mm2:W x L | 8SOIC: 29 mm2: 6 x 4.9(SOIC) PKG |
Rail-to-Rail | No |
Rating | Catalog |
Slew Rate(Typ) | 360 V/us |
Total Supply Voltage(Max) | 12 +5V=5, +/-5V=10 |
Total Supply Voltage(Min) | 5 +5V=5, +/-5V=10 |
Vn at 1kHz(Typ) | 1 nV/rtHz |
Vn at Flatband(Typ) | 1 nV/rtHz |
Vos (Offset Voltage @ 25C)(Max) | 0.5 mV |
生态计划
RoHS | Compliant |
设计套件和评估模块
- Evaluation Modules & Boards: LMH730123
Evaluation Board for High-Speed Dual Op Amp in the 8-Pin MSOP Package
Lifecycle Status: Active (Recommended for new designs) - Evaluation Modules & Boards: LMH730036
Evaluation Board for High-Speed Dual Op Amp in the 8-Pin SOIC Package
Lifecycle Status: Active (Recommended for new designs)
应用须知
- AN-1604 Decompensated Operational Amplifiers (Rev. B)PDF, 206 Kb, 修订版: B, 档案已发布: May 1, 2013
This application report discusses the what, why, and where of decompensated op amps. This applicationreport also describes external compensation techniques, such as reducing loop gain, to stabilize op ampsoperated at gains less than the minimum stable gain specified in the datasheet. A comprehensivetreatment of input lead-lag compensation including examples is presented. - OA-14 Improving Amplifier Noise for High 3rd Intercept Amplifiers (Rev. F)PDF, 594 Kb, 修订版: F, 档案已发布: May 1, 2013
This application report discusses improving Amplifier Noise for High 3rd Intercept Amplifiers. - Transimpedance Amplifiers (TIA): Choosing the Best Amplifier for the job (Rev. A)PDF, 153 Kb, 修订版: A, 档案已发布: May 16, 2017
This application note is intended as a guide for the designer looking to amplify the small signal from a photodiode or avalanche diode so that it would be large enough for further processing (e.g. data acquisition) or to trigger some other event in a system. The challenge in doing so, as always, is to not degrade the signal such that it becomes indistinguishable from random noi - OA-15 Frequent Faux Pas in Applying Wideband Current Feedback Amplifiers (Rev. C)PDF, 365 Kb, 修订版: C, 档案已发布: Apr 17, 2013
As op amp operating speeds have moved to ever higher frequencies, a whole new set of design concernshave come into play for linear op amp applications. With the development of the current feedbacktopology, design concerns unique to that topology must also be considered if optimal performance is to beachieved from devices offering over 200 MHz в€’3 dB bandwidths. This application report reviews
模型线
系列: LMH6626 (4)
- LMH6626MA/NOPB LMH6626MAX/NOPB LMH6626MM/NOPB LMH6626MMX/NOPB
制造商分类
- Semiconductors > Amplifiers > Operational Amplifiers (Op Amps) > High-Speed Op Amps (>=50MHz)