双通道,11位,200MSPS模数转换器(ADC)64-VQFN -40至85
PDF, 498 Kb, 档案已发布: Aug 30, 2010
Coherency is a well-known requirement when using FFT techniques to examine the spectrum of the output of an analog-to-digital converter. SNRBoost(3G) technology results in loss in coherency, and this can be seen as an unstable noise floor in the spectrum. Windowing of the ADC output is a well-known solution to restore coherency and stable spectrum.However, windowing also modifies the amplitude o
PDF, 678 Kb, 档案已发布: Oct 22, 2011
In TI’s line of high-speed analog-to-digital converters (ADCs) with SNRBoost technology, output amplitude tends to deviate from its expected value when the applied input amplitude is small. This application note explains this phenomenon and the reasons it occurs.
PDF, 401 Kb, 修订版: A, 档案已发布: Dec 29, 2011
System designers traditionally power the high-speed data converter in their systems from a low-noise, low-dropout linear regulator (LDO) in order to achieve the performance described in the analog-to-digital converter (ADC) data sheet. However, LDOs inherently are not very power efficient. Switching regulators, on the other hand, offer good power efficiency but typically come with higher output no
PDF, 1.1 Mb, 档案已发布: Jan 11, 2012
The goal of this document is to introduce a wide range of theories and topics that are relevant tohigh-speed analog-to-digital converters (ADC). This document provides details on sampling theorydata-sheet specifications ADC selection criteria and evaluation methods clock jitter and other commonsystem-level concerns. In addition some end-users will want to extend the performance capabil
PDF, 733 Kb, 档案已发布: Feb 27, 2012
Several well-known methods exist for designing passive inductor-capacitor (LC) filters with resistive load terminations. However, when LC filters are used to drive the analog input pins of a high-speed analog-to-digital converter (ADC), special consideration must be given to the ADC input impedance. Not accounting for the ADC input impedance often results in a filter design that does not meet the
PDF, 1.3 Mb, 档案已发布: Jul 28, 2006
Board layout and stencil information for most Texas Instruments Quad Flat No-Lead (QFN) devices is provided in their data sheets. This document helps printed-circuit board designers understand and better use this information for optimal designs.
PDF, 805 Kb, 档案已发布: Sep 4, 2008
TI has introduced a family of devices well-suited to meet the demands for high-speed ADC devices such as the ADS5527 which is capable of sampling up to 210 MSPS. To realize the full potential of these high-performance products it is imperative to provide a low phase noise clock source. The CDCE62005 clock synthesizer chip offers a real-world clocking solution to meet these stringent requirements
PDF, 376 Kb, 档案已发布: Apr 28, 2009
This application report explains different aspects of selecting analog-to-digital and digital-to-analog data converters for Software-Defined Radio (SDR) applications. It also explains how ADS61xx ADCs and the DAC5688 from Texas Instruments fit properly for SDR designs.
PDF, 327 Kb, 修订版: A, 档案已发布: Sep 10, 2010
This application report discusses the performance-related aspects of passive and active interfaces at the analog input of high-speed pipeline analog-to-digital converters (ADCs). The report simplifies the many possibilities into two main categories: passive and active interface circuits. The first section of the report gives an overview of equivalent models of buffered and unbuffered ADC input cir
PDF, 2.3 Mb, 档案已发布: Jun 2, 2008
This application report presents phase noise data taken on the CDCE72010 jitter cleaner and synchronizer PLL device. The phase noise performance of the CDCE72010 depends on the phase noise of the reference clock VCXO clock and the CDCE72010 itself. This application report shows the phase noise performance at several of the most popular CDMA frequencies. This data helps the user to choose the rig
PDF, 424 Kb, 档案已发布: Jun 8, 2008
Texas Instruments has recently introduced a family of devices suitable to meet the demands of high-speed high-IF sampling analog-to-digital converters (ADCs) such as the ADS5483 which is capable of sampling up to 135 MSPS. To realize the full potential of these high-performance devices the system must provide an extremely low phase noise clock source. The CDCE72010 clock synthesizer chip offers
PDF, 132 Kb, 修订版: A, 档案已发布: Apr 16, 2015
PDF, 425 Kb, 修订版: B, 档案已发布: Oct 9, 2011
This glossary is a collection of the definitions of Texas Instruments' Delta-Sigma (О”ОЈ), successive approximation register (SAR), and pipeline analog-to-digital (A/D) converter specifications and performance characteristics. Although there is a considerable amount of detail in this document, the product data sheet for a particular product specification is the best and final reference.
PDF, 69 Kb, 修订版: A, 档案已发布: May 18, 2015