Datasheet Texas Instruments LM3478MM — 数据表

制造商Texas Instruments
系列LM3478
零件号LM3478MM
Datasheet Texas Instruments LM3478MM

用于开关稳压器8-VSSOP的40V宽Vin低端N通道控制器-40至125

数据表

LM3478 High-Efficiency Low-Side N-Channel Controller for Switching Regulator datasheet
PDF, 1.5 Mb, 修订版: X, 档案已发布: Feb 28, 2017
从文件中提取

价格

状态

Lifecycle StatusNRND (Not recommended for new designs)
Manufacture's Sample AvailabilityNo

打包

Pin8
Package TypeDGK
Industry STD TermVSSOP
JEDEC CodeR-PDSO-G
Package QTY1000
CarrierSMALL T&R
Device MarkingS14B
Width (mm)3
Length (mm)3
Thickness (mm).97
Pitch (mm).65
Max Height (mm)1.07
Mechanical Data下载

替代品

ReplacementLM3478MM/NOPB
Replacement CodeS

参数化

Duty Cycle(Max)100 %
Iout(Max)10 A
Iq(Typ)2.7 mA
Operating Temperature Range-40 to 125 C
Package GroupVSSOP
RatingCatalog
Regulated Outputs1
Special FeaturesAdjustable Current Limit,Enable,Frequency Synchronization,Light Load Efficiency,Pre-Bias Start-Up
Switch Current Limit(Typ)10 A
Switching Frequency(Max)1000 kHz
Switching Frequency(Min)100 kHz
TypeController
Vin(Max)40 V
Vin(Min)2.97 V
Vout(Max)500 V
Vout(Min)1.26 V

生态计划

RoHSSee ti.com

设计套件和评估模块

  • Evaluation Modules & Boards: LM3478EVAL
    High Efficiency Low-Side N-Channel Controller for Switching Regulator
    Lifecycle Status: Active (Recommended for new designs)

应用须知

  • AN-1286 Compensation For The LM3478 Boost Controller (Rev. C)
    PDF, 356 Kb, 修订版: C, 档案已发布: Apr 23, 2013
    The LM3478 is a low side N-Channel controller for switching regulators. Like many switching controllers,the added flexibility in component selection can cause problems for users when determining thecompensation scheme. It is the goal of this application report to present a decent groundwork to allow thereader to select with confidence the correct compensation components. To achieve this we l
  • AN-1484 Designing A SEPIC Converter (Rev. E)
    PDF, 220 Kb, 修订版: E, 档案已发布: Apr 23, 2013
    In a single ended primary inductance converter (SEPIC) design, the output voltage can be higher or lowerthan the input voltage. The SEPIC converter shown in Figure 1 uses two inductors: L1 and L2. The twoinductors can be wound on the same core since the same voltages are applied to them throughout theswitching cycle.
  • Modeling & Design of Current Mode Control Boost Converters (Rev. B)
    PDF, 316 Kb, 修订版: B, 档案已发布: Apr 23, 2013
    This application note presents a detail modeling and design of current mode control boost convertersoperating in the continuous conduction mode (CCM). Based on the derived small signal models, thedesign of a lag compensator for current mode control boost converters will be detailed. The LM3478 boostcontroller will be used in the example. Simulation and hardware measurement of frequency respo
  • AN-1990 Compensation for Current Mode Control SEPIC Converters (Rev. A)
    PDF, 247 Kb, 修订版: A, 档案已发布: Apr 23, 2013
    This application note discusses the use of SEPIC converters in various applications.
  • LM34xx How to Design Flyback Converter with LM3481 Boost Controller
    PDF, 1.7 Mb, 档案已发布: Sep 21, 2016
    The TexasInstrumentsLM3481boostcontrolleris a versatilelow-sideN-FEThigh-performancecontrollerfor switchingregulators.Thedevicehaswiderangeof applicationssuchas automotivestart-stopapplication,one-cellor two-cellLi-ionbattery-poweredportableBluetoothaudiosystem,industrialsystemisolatedsupplies,and so forth,and supportstopologi
  • Demystifying Type II and Type III Compensators Using Op-Amp and OTA for DC/DC Co
    PDF, 782 Kb, 档案已发布: Jul 11, 2014
  • Softstart Using Constant Current Constant Voltage Approach
    PDF, 337 Kb, 档案已发布: Jul 24, 2015
    In many systems backup power is provided either by batteries or simply by a large value capacitor. Inthese applications the capacitor would only provide the current when the primary power source fails.Further, these applications are usually for light load currents. During normal operation the backupcapacitors are kept charged up by a DC/DC converter. The challenge involved in an application

模型线

制造商分类

  • Semiconductors > Power Management > Non-isolated DC/DC Switching Regulator > Step-Up (Boost) > Boost Controller (External Switch)