Datasheet Texas Instruments TPS61175QPWPRQ1 — 数据表
制造商 | Texas Instruments |
系列 | TPS61175-Q1 |
零件号 | TPS61175QPWPRQ1 |
具有可编程开关频率的3A高压汽车升压转换器14-HTSSOP -40至125
数据表
TPS61175-Q1 3-A High Voltage Boost Converter with Soft-start and Programmable Switching Frequency datasheet
PDF, 1.1 Mb, 修订版: A, 档案已发布: Apr 9, 2016
从文件中提取
价格
状态
Lifecycle Status | Active (Recommended for new designs) |
Manufacture's Sample Availability | Yes |
打包
Pin | 14 |
Package Type | PWP |
Industry STD Term | HTSSOP |
JEDEC Code | R-PDSO-G |
Package QTY | 2000 |
Carrier | LARGE T&R |
Device Marking | 61175Q1 |
Width (mm) | 4.4 |
Length (mm) | 5 |
Thickness (mm) | 1 |
Pitch (mm) | .65 |
Max Height (mm) | 1.2 |
Mechanical Data | 下载 |
参数化
Duty Cycle(Max) | 93 % |
Iq(Typ) | 3 mA |
Operating Temperature Range | -40 to 125 C |
Package Group | HTSSOP |
Rating | Automotive |
Regulated Outputs | 1 |
Special Features | Enable,Frequency Synchronization,Light Load Efficiency |
Switch Current Limit(Min) | 3 A |
Switch Current Limit(Typ) | 3.8 A |
Switching Frequency(Max) | 2640 kHz |
Switching Frequency(Min) | 160 kHz |
Type | Converter |
Vin(Max) | 18 V |
Vin(Min) | 2.9 V |
Vout(Max) | 38 V |
Vout(Min) | 2.9 V |
生态计划
RoHS | Compliant |
设计套件和评估模块
- Evaluation Modules & Boards: TPS61175EVM-326
TPS61175 12V Input, 24V Output, 1.2A Evaluation Module
Lifecycle Status: Active (Recommended for new designs) - Evaluation Modules & Boards: TPS61175EVM-588
TPS61175 9V to 18V Input, 12V Output, SEPIC Evaluation Module
Lifecycle Status: Active (Recommended for new designs)
应用须知
- Simple Power Good circuit using the TPS61175 FREQ pin as referencePDF, 80 Kb, 档案已发布: May 5, 2009
The TPS61175 FREQ pin can provide a 1.229V reference for use in other circuits, including a power good circuit. - Designing a Split-Rail SEPIC With the TPS61175PDF, 493 Kb, 档案已发布: Feb 2, 2010
Often a regulated DC output voltage is needed between the minimum and maximum input voltages of a DC/DC converter, but neither a buck or boost converter in standard configurations is sufficient. However, a boost converter integrated circuit (IC) can be configured to drive a single-ended, primary inductor converter (SEPIC) power stage and provide an output voltage that is between the input voltage - Understanding TPS61175's Pulse-Skipping FunctionPDF, 643 Kb, 档案已发布: Jul 30, 2009
- How to Design a SEPIC Converter With the TPS61175PDF, 586 Kb, 档案已发布: Jun 12, 2009
When a dc/dc converter providing a regulated output voltage between the minimum and maximum input voltage is required, neither a single buck or a boost converter can provide the output voltage. However, a boost converter integrated circuit (IC) can be configured to drive a single-ended, primary-inductor converter (SEPIC) power stage and provide an output voltage that is between the input voltage e - Description Compensating the Current Mode Boost Control LoopPDF, 411 Kb, 档案已发布: Dec 9, 2010
- Extending the Input Voltage Range of the TPS6116x/8x/9x WLED DriversPDF, 124 Kb, 档案已发布: Aug 12, 2009
The TPS6116x, TPS6118x and TPS6119x WLED driver and TPS6117x boost converter integrated circuits (IC) can operate with different input voltages, one powering the IC itself and the other powering the boost power stage. This application report explains various options on how to use the WLED drivers with split power rails. This allows these LED drivers to be used in applications where the available - Using a portable-power boost converter in an isolated flyback applicationPDF, 535 Kb, 档案已发布: Mar 11, 2009
- Using the TPS6215x in an Inverting Buck-Boost Topology.. (Rev. C)PDF, 738 Kb, 修订版: C, 档案已发布: Dec 19, 2012
- Q1 2009 Issue Analog Applications JournalPDF, 1.4 Mb, 档案已发布: Mar 11, 2009
- Design considerations for a resistive feedback divider in a DC/DC converterPDF, 393 Kb, 档案已发布: Apr 26, 2012
- Basic Calculation of a Boost Converter's Power Stage (Rev. C)PDF, 186 Kb, 修订版: C, 档案已发布: Jan 8, 2014
This application note gives the equations to calculate the power stage of a boost converter built with an IC with integrated switch and operating in continuous conduction mode. It is not intended to give details on the functionality of a boost converter (see Reference 1) or how to compensate a converter. See the references at the end of this document if more detail is needed. - IQ: What it is what it isn’t and how to use itPDF, 198 Kb, 档案已发布: Jun 17, 2011
- Performing Accurate PFM Mode Efficiency Measurements (Rev. A)PDF, 418 Kb, 修订版: A, 档案已发布: Dec 11, 2018
When performing measurements on DC-DC converters using pulse frequency modulation(PFM)or any power save mode proper care must be taken to ensure that the measurements are accurate. An accurate PFM mode efficiency measurement is critical for systems which require high efficiency at low loads such as in smart home systems tablets wearables and metering.
模型线
系列: TPS61175-Q1 (1)
- TPS61175QPWPRQ1
制造商分类
- Semiconductors > Power Management > Non-isolated DC/DC Switching Regulator > Step-Up (Boost) > Boost Converter (Integrated Switch)