Datasheet Texas Instruments TPS54620RHLT — 数据表
制造商 | Texas Instruments |
系列 | TPS54620 |
零件号 | TPS54620RHLT |
4.5V至17V输入,6A同步降压SWIFT™转换器14-VQFN -40至150
数据表
TPS54620 4.5-V to 17-V Input, 6-A, Synchronous, Step-Down SWIFTв„ў Converter datasheet
PDF, 2.1 Mb, 修订版: F, 档案已发布: May 23, 2017
从文件中提取
价格
状态
Lifecycle Status | Active (Recommended for new designs) |
Manufacture's Sample Availability | No |
打包
Pin | 14 |
Package Type | RHL |
Industry STD Term | VQFN |
JEDEC Code | S-PQFP-N |
Package QTY | 250 |
Carrier | SMALL T&R |
Device Marking | 54620 |
Width (mm) | 3.5 |
Length (mm) | 3.5 |
Thickness (mm) | .9 |
Pitch (mm) | .5 |
Max Height (mm) | 1 |
Mechanical Data | 下载 |
参数化
Control Mode | Current Mode |
Duty Cycle(Max) | 98 % |
Iout(Max) | 6 A |
Iq(Typ) | 0.6 mA |
Operating Temperature Range | -40 to 150 C |
Package Group | VQFN |
Rating | Catalog |
Regulated Outputs | 1 |
Special Features | Enable,Frequency Synchronization,Power Good,Pre-Bias Start-Up,Synchronous Rectification,Tracking |
Switching Frequency(Max) | 1600 kHz |
Switching Frequency(Min) | 200 kHz |
Type | Converter |
Vin(Max) | 17 V |
Vin(Min) | 4.5 V |
Vout(Max) | 15 V |
Vout(Min) | 0.8 V |
生态计划
RoHS | Compliant |
设计套件和评估模块
- Evaluation Modules & Boards: TPS54620EVM-374
TPS54620 8V to 17V, 6A SWIFTВ™ Converter Evaluation Module
Lifecycle Status: Active (Recommended for new designs) - Evaluation Modules & Boards: DLPLCR6500EVM
DLPВ® LightCrafterВ™ 6500 Evaluation Module
Lifecycle Status: Active (Recommended for new designs) - Evaluation Modules & Boards: DLPLCR9000EVM
DLPВ® LightCrafterВ™ 9000 Evaluation Module
Lifecycle Status: Active (Recommended for new designs) - Evaluation Modules & Boards: DLPLCR4500EVM
DLPВ® LightCrafterВ™ 4500
Lifecycle Status: Active (Recommended for new designs) - Evaluation Modules & Boards: EVMK2G
66AK2Gx (K2G) Evaluation Module
Lifecycle Status: Active (Recommended for new designs)
应用须知
- Ultra Small 5A, Adjustable Output Reference design using TPS54620PDF, 711 Kb, 档案已发布: May 21, 2010
- Create an Inverting Power Supply Using a Synchronous Step-Down Regulator (Rev. A)PDF, 911 Kb, 修订版: A, 档案已发布: Jun 18, 2012
- Measuring the Junction Temperature of the TPS54620PDF, 119 Kb, 档案已发布: Jan 14, 2010
- TPS54620 Parallel OperationPDF, 412 Kb, 档案已发布: Mar 3, 2010
The TPS54620 is a synchronous, step-down, dc-dc converter with integrated high- and low-side FETs. It is rated for a continuous output of 6 A. In order to increase the output current capability, it is possible to operate two TPS54620 circuits in parallel. Certain techniques are required in the design to ensure that each of the TPS54620 converters provides an equal share of the output current. T - Minimizing Output Ripple During StartupPDF, 675 Kb, 档案已发布: Jun 22, 2017
A buck DC/DC switching converter has a minimum on-time at which it can operate. This limits theminimum output voltage a converter can regulate to while keeping a fixed frequency. The limitation of theminimum on-time is often only considered for the steady-state output voltage; however, when the outputvoltage ramps up, in most cases the output voltage ramps up from 0 V. When the converter tri - Not All Jitter Is Created Equal (Rev. A)PDF, 555 Kb, 修订版: A, 档案已发布: Jul 4, 2015
This application report offers a tutorial discussion on jitter in switching DC-DC converters. Not all power supply designs are equally susceptible to jitter, nor are they equally affected by jitter. Modes of switching jitter are defined and explained for several popular control architectures, which are then analyzed for sources of jitter. An example contrasting the amount of jitter and effect on o - Calculating EfficiencyPDF, 175 Kb, 档案已发布: Feb 19, 2010
This application report provides a step-by-step procedure for calculating buck converter efficiency and power dissipation at operating points not provided by the data sheet. - Designing Type III Compensation for Current Mode Step-Down Converters (Rev. A)PDF, 298 Kb, 修订版: A, 档案已发布: Sep 15, 2010
One of the well-known benefits of current-mode control is that the system stability can be easily achieved by Type II compensation design. It is possible to improve the transient response of a current mode DC/DC converter by adopting Type III compensation to boost the crossover frequency and phase margin. Type III compensation is simple to design and needs only one extra component. - Demystifying Type II and Type III Compensators Using Op-Amp and OTA for DC/DC CoPDF, 782 Kb, 档案已发布: Jul 11, 2014
- Understanding Thermal Dissipation and Design of a HeatsinkPDF, 59 Kb, 档案已发布: May 4, 2011
Power dissipation performance must be well understood prior to integrating devices on a printed-circuit board (PCB) to ensure that any given device is operated within its defined temperature limits. When a device is running, it consumes electrical energy that is transformed into heat. Most of the heat is typically generated by switching devices like MOSFETs, ICs, etc. This application report discu
模型线
系列: TPS54620 (5)
- 905-5462001 TPS54620RGYR TPS54620RGYT TPS54620RHLR TPS54620RHLT
制造商分类
- Semiconductors > Power Management > Non-isolated DC/DC Switching Regulator > Step-Down (Buck) > Buck Converter (Integrated Switch)