Datasheet Texas Instruments LMR70503 — 数据表

制造商Texas Instruments
系列LMR70503
Datasheet Texas Instruments LMR70503

SIMPLESWITCHERВ®2.8V至5.5V,300mA降压/升压负输出稳压器

数据表

LMR70503 Buck-Boost Converter For Negative Output Voltage in DSBGA datasheet
PDF, 1.6 Mb, 修订版: A, 档案已发布: Apr 4, 2013
从文件中提取

价格

状态

LMR70503TM/NOPBLMR70503TMX/NOPB
Lifecycle StatusActive (Recommended for new designs)Active (Recommended for new designs)
Manufacture's Sample AvailabilityNoYes

打包

LMR70503TM/NOPBLMR70503TMX/NOPB
N12
Pin88
Package TypeYFXYFX
Industry STD TermDSBGADSBGA
JEDEC CodeR-XBGA-NR-XBGA-N
Package QTY2503000
CarrierSMALL T&RLARGE T&R
Device MarkingS3S3
Thickness (mm).42.42
Pitch (mm).4.4
Max Height (mm).675.675
Mechanical Data下载下载

参数化

Parameters / ModelsLMR70503TM/NOPB
LMR70503TM/NOPB
LMR70503TMX/NOPB
LMR70503TMX/NOPB
Duty Cycle(Max), %9090
Iq(Typ), mA0.30.3
Operating Temperature Range, C-40 to 125-40 to 125
Package GroupDSBGADSBGA
RatingCatalogCatalog
Special FeaturesEnableEnable
Switch Current Limit(Min), A0.250.25
Switch Current Limit(Typ), A0.320.32
Switching Frequency(Max), kHz10001000
Switching Frequency(Min), kHz500500
TopologyInvertingInverting
TypeConverterConverter
Vin(Max), V5.55.5
Vin(Min), V2.82.8
Vout(Max), V-0.9-0.9
Vout(Min), V-5.5-5.5

生态计划

LMR70503TM/NOPBLMR70503TMX/NOPB
RoHSCompliantCompliant

应用须知

  • AN-643 EMI/RFI Board Design (Rev. B)
    PDF, 742 Kb, 修订版: B, 档案已发布: May 3, 2004
    Application Note 643 EMI/RFI Board Design
  • Input and Output Capacitor Selection
    PDF, 219 Kb, 档案已发布: Sep 19, 2005
  • AN-2155 Layout Tips for EMI Reduction in DC/ DC Converters (Rev. A)
    PDF, 3.6 Mb, 修订版: A, 档案已发布: Apr 23, 2013
    This application note will explore how the layout of your DC/DC power supply can significantly affect theamount of EMI that it produces. It will discuss several variations of a layout analyze the results andprovide answers to some common EMI questions such whether or not to use a shielded inductor.
  • AN-1566 Techniques for Thermal Analysis of Switching Power Supply Designs (Rev. A)
    PDF, 1.4 Mb, 修订版: A, 档案已发布: Apr 23, 2013
    This application note provides thermal power analysis techniques for analyzing the power IC.
  • AN-1889 How to Measure the Loop Transfer Function of Power Supplies (Rev. A)
    PDF, 2.7 Mb, 修订版: A, 档案已发布: Apr 23, 2013
    This application report shows how to measure the critical points of a bode plot with only an audiogenerator (or simple signal generator) and an oscilloscope. The method is explained in an easy to followstep-by-step manner so that a power supply designer can start performing these measurements in a shortamount of time.
  • Semiconductor and IC Package Thermal Metrics (Rev. C)
    PDF, 201 Kb, 修订版: C, 档案已发布: Apr 19, 2016
  • Understanding Buck-Boost Power Stages in Switchmode Power Supplies (Rev. A)
    PDF, 363 Kb, 修订版: A, 档案已发布: May 28, 2002
  • AN-1149 Layout Guidelines for Switching Power Supplies (Rev. C)
    PDF, 82 Kb, 修订版: C, 档案已发布: Apr 23, 2013
    When designing a high frequency switching regulated power supply layout is very important. Using agood layout can solve many problems associated with these types of supplies. The problems due to a badlayout are often seen at high current levels and are usually more obvious at large input to output voltagedifferentials. Some of the main problems are loss of regulation at high output current
  • AN-1229 SIMPLE SWITCHER PCB Layout Guidelines (Rev. C)
    PDF, 374 Kb, 修订版: C, 档案已发布: Apr 23, 2013
    This application report provides SIMPLE SWITCHER™ PCB layout guidelines.
  • AN-2162 Simple Success With Conducted EMI From DC-DC Converters (Rev. C)
    PDF, 2.5 Mb, 修订版: C, 档案已发布: Apr 24, 2013
    Electromagnetic Interference (EMI) is an unwanted effect between two electrical systems as a result ofeither electromagnetic radiation or electromagnetic conduction. EMI is the major adverse effect caused bythe application of switch-mode power supplies (SMPS). In switching power supplies EMI noise isunavoidable due to the switching actions of the semiconductor devices and resulting disconti
  • AN-1520 A Guide to Board Layout for Best Thermal Resistance for Exposed Packages (Rev. B)
    PDF, 9.2 Mb, 修订版: B, 档案已发布: Apr 23, 2013
    This thermal application report provides guidelines for the optimal board layout to achieve the best thermalresistance for exposed packages. The thermal resistance between junction-to-ambient (ОёJA) is highlydependent on the PCB (Printed Circuit Board) design factors. This becomes more critical for packageshaving very low thermal resistance between junction-to-case such as exposed pad TSSOP

模型线

系列: LMR70503 (2)

制造商分类

  • Semiconductors> Power Management> Non-isolated DC/DC Switching Regulator> Buck/Boost, Inverting or Split-Rail> Buck/Boost, Inverting or Split-Rail Converter (Integrated Switch)