Datasheet Texas Instruments OPA128 — 数据表
制造商 | Texas Instruments |
系列 | OPA128 |
Difet静电计级运算放大器
数据表
Datasheet OPA128
PDF, 138 Kb, 档案已发布: Sep 27, 2000, 页数: 11
Difet Electrometer-Grade Operational Amplifier
Difet Electrometer-Grade Operational Amplifier
从文件中提取
价格
状态
OPA128JM | OPA128KM | OPA128LM | OPA128SM | |
---|---|---|---|---|
Lifecycle Status | Active (Recommended for new designs) | Active (Recommended for new designs) | Active (Recommended for new designs) | Active (Recommended for new designs) |
Manufacture's Sample Availability | No | Yes | Yes | Yes |
打包
OPA128JM | OPA128KM | OPA128LM | OPA128SM | |
---|---|---|---|---|
N | 1 | 2 | 3 | 4 |
Pin | 8 | 8 | 8 | 8 |
Package Type | LMC | LMC | LMC | LMC |
Industry STD Term | TO-CAN | TO-CAN | TO-CAN | TO-CAN |
JEDEC Code | O-MBCY-W | O-MBCY-W | O-MBCY-W | O-MBCY-W |
Package QTY | 20 | 20 | 20 | 20 |
Carrier | TUBE | TUBE | TUBE | TUBE |
Device Marking | OPA128JM | OPA128KM | OPA128LM | OPA128SM |
Width (mm) | 9.08 | 9.08 | 9.08 | 9.08 |
Length (mm) | 9.08 | 9.08 | 9.08 | 9.08 |
Thickness (mm) | 4.4 | 4.4 | 4.4 | 4.4 |
Pitch (mm) | 2.54 | 2.54 | 2.54 | 2.54 |
Max Height (mm) | 5.72 | 5.72 | 5.72 | 5.72 |
Mechanical Data | 下载 | 下载 | 下载 | 下载 |
参数化
Parameters / Models | OPA128JM | OPA128KM | OPA128LM | OPA128SM |
---|---|---|---|---|
Additional Features | N/A | N/A | N/A | N/A |
Architecture | FET | FET | FET | FET |
CMRR(Min), dB | 80 | 80 | 80 | 80 |
CMRR(Typ), dB | 118 | 118 | 118 | 118 |
GBW(Typ), MHz | 1 | 1 | 1 | 1 |
Input Bias Current(Max), pA | 0.075 | 0.075 | 0.075 | 0.075 |
Iq per channel(Max), mA | 1.8 | 1.8 | 1.8 | 1.8 |
Iq per channel(Typ), mA | 0.9 | 0.9 | 0.9 | 0.9 |
Number of Channels | 1 | 1 | 1 | 1 |
Offset Drift(Typ), uV/C | 5 | 5 | 5 | 5 |
Operating Temperature Range, C | -55 to 125 | -55 to 125 | -55 to 125 | -55 to 125 |
Output Current(Typ), mA | 34 | 34 | 34 | 34 |
Package Group | TO-99 | TO-99 | TO-99 | TO-99 |
Package Size: mm2:W x L, PKG | 8TO-99: 80 mm2: 8.96 x 8.96(TO-99) | 8TO-99: 80 mm2: 8.96 x 8.96(TO-99) | 8TO-99: 80 mm2: 8.96 x 8.96(TO-99) | 8TO-99: 80 mm2: 8.96 x 8.96(TO-99) |
Rail-to-Rail | Out | Out | Out | Out |
Rating | Catalog | Catalog | Catalog | Catalog |
Slew Rate(Typ), V/us | 3 | 3 | 3 | 3 |
Total Supply Voltage(Max), +5V=5, +/-5V=10 | 36 | 36 | 36 | 36 |
Total Supply Voltage(Min), +5V=5, +/-5V=10 | 10 | 10 | 10 | 10 |
Vn at 1kHz(Typ), nV/rtHz | 27 | 27 | 27 | 27 |
Vos (Offset Voltage @ 25C)(Max), mV | 0.5 | 0.5 | 0.5 | 0.5 |
生态计划
应用须知
- Designing Photodiode Amplifier Circuits with OPA128PDF, 76 Kb, 档案已发布: Oct 2, 2000
The OPA128 ultra-low bias current operational amplifier achieves its 75fA maximum bias current without compromise. Using standard design techniques, serious performance trade-offs were required which sacrificed overall amplifier performance in order to reach femtoamp (fA = 10-15A) bias currents. - Diode-Connected FET Protects Op AmpsPDF, 49 Kb, 档案已发布: Oct 2, 2000
Providing input-overload protection for sensitive measurement circuits proves difficult when you must not degrade the circuits? performance in the process. It?s an especially tricky problem when you?re measuring a material?s dielectric properties. In such an application, an ultra-low input bias current op amp serves as a current integrator to measure a dielectric?s response to a 100V step. - Boost Instrument Amp CMR With Common-Mode Driven SuppliesPDF, 175 Kb, 档案已发布: Sep 27, 2000
Ever-increasing demands are being placed on instrumentation amplifier (IA) performance. When standard IAs can not deliver the required performance, consider this enhanced version. Dramatic performance improvements can be achieved by operating the input amplifiers of a classical three-op-amp IA from common-mode driven sub-regulated power supplies. - Comparison of Noise Performance of FET Transimpedence Amp/Switched IntegratorPDF, 66 Kb, 档案已发布: Sep 27, 2000
Low-input current FET operational amplifiers are universlly used to monitor photodetector, or more commonly photodiode currents. These photodetectors bridge the gap between a physical event, light, and electronics. There are a variey of amplifier configurations to select from and the choice is based on noise, bandwidth, offset, and linearity. A considerable amount has been written on the performan - Compensate Transimpedance Amplifiers Intuitively (Rev. A)PDF, 69 Kb, 修订版: A, 档案已发布: Mar 30, 2005
Transimpedance amplifiers are used to convert low-level photodiode currents to usable voltage signals. All too often, the amplifiers have to be empirically compensated to operate properly. The problem can be easily understood if one looks at all the elements involved. - Tuning in AmplifiersPDF, 44 Kb, 档案已发布: Oct 2, 2000
Have you ever had the experience of designing an analog gain block with an amplifier that is specified to be unity gain stable only to find that it is oscillating out of control in your circuit? Or have you ever replaced a stable voltage feedback amplifier with a current feedback amplifier to find that the current feedback amplifier immediately oscillates when placed in the amplifier socket? Oscil - Single-Supply Operation of Operational AmplifiersPDF, 77 Kb, 档案已发布: Oct 2, 2000
Operation of op amps from single supply voltages is useful when negative supply voltages are not available. Furthermore, certain applications using high voltage and high current op amps can derive important benefits from single supply operation. - Op Amp Performance AnalysisPDF, 76 Kb, 档案已发布: Oct 2, 2000
This bulletin reflects the analysis power gained through knowledge of an op amp circuit's feedback factor. Feedback dictates the performance of an op amp both in function and in quality. The major specifications of the amplifier descibe an open-loop device awaiting feedback direction of the end circuit's function. Just how well the amplifier performs the function reflects through the feedback inte
模型线
制造商分类
- Semiconductors> Amplifiers> Operational Amplifiers (Op Amps)> Precision Op Amps