Datasheet Texas Instruments OPA695IDBVTG4 — 数据表
制造商 | Texas Instruments |
系列 | OPA695 |
零件号 | OPA695IDBVTG4 |
具有禁用6-SOT-23的超宽带电流反馈运算放大器-40至85
数据表
OPA695 Ultra-Wideband, Current-Feedback Operational Amplifier With Disable datasheet
PDF, 1.8 Mb, 修订版: H, 档案已发布: Dec 31, 2015
从文件中提取
价格
状态
Lifecycle Status | Active (Recommended for new designs) |
Manufacture's Sample Availability | Yes |
打包
Pin | 6 |
Package Type | DBV |
Industry STD Term | SOT-23 |
JEDEC Code | R-PDSO-G |
Package QTY | 250 |
Carrier | SMALL T&R |
Device Marking | A71L |
Width (mm) | 1.6 |
Length (mm) | 2.9 |
Thickness (mm) | 1.2 |
Pitch (mm) | .95 |
Max Height (mm) | 1.45 |
Mechanical Data | 下载 |
参数化
2nd Harmonic | 65 dBc |
3rd Harmonic | 86 dBc |
@ MHz | 10 |
Acl, min spec gain | 1 V/V |
Additional Features | Shutdown |
Architecture | Bipolar,Current FB |
BW @ Acl | 1700 MHz |
CMRR(Min) | 51 dB |
CMRR(Typ) | 56 dB |
GBW(Typ) | 1700 MHz |
Input Bias Current(Max) | 30000000 pA |
Iq per channel(Max) | 13.3 mA |
Iq per channel(Typ) | 12.9 mA |
Number of Channels | 1 |
Offset Drift(Typ) | 15 uV/C |
Operating Temperature Range | -40 to 85 C |
Output Current(Typ) | 120 mA |
Package Group | SOT-23 |
Package Size: mm2:W x L | 6SOT-23: 8 mm2: 2.8 x 2.9(SOT-23) PKG |
Rail-to-Rail | No |
Rating | Catalog |
Slew Rate(Typ) | 4300 V/us |
Total Supply Voltage(Max) | 12 +5V=5, +/-5V=10 |
Total Supply Voltage(Min) | 5 +5V=5, +/-5V=10 |
Vn at 1kHz(Typ) | 1.8 nV/rtHz |
Vn at Flatband(Typ) | 1.8 nV/rtHz |
Vos (Offset Voltage @ 25C)(Max) | 3 mV |
生态计划
RoHS | Compliant |
设计套件和评估模块
- Evaluation Modules & Boards: DEM-OPA-SOT-1B
DEM-OPA-SOT-1B
Lifecycle Status: Active (Recommended for new designs) - Evaluation Modules & Boards: DEM-OPA-ADS-SO-1A
DEM-OPA-ADS-SO-1A
Lifecycle Status: Preview (Device has been announced but is not in production. Samples may or may not be available) - Evaluation Modules & Boards: DEM-OPA-SO-1B
DEM-OPA-SO-1B
Lifecycle Status: Active (Recommended for new designs)
应用须知
- Low-power, high-intercept interface to the ADS5424, 105-MSPS converterPDF, 478 Kb, 档案已发布: Oct 10, 2005
- Design for a Wideband Differential Transimpedance DAC Output (Rev. A)PDF, 438 Kb, 修订版: A, 档案已发布: Oct 17, 2016
High-speed digital-to-analog converters commonly offer a complementary current output signal. Most output interface implementations use either a resistive load and/or a transformer to convert this current source signal to a voltage. Where a dc-coupled interface is required, a carefully designed differential transimpedance stage can offer an attractive alternative. Design considerations and options - Voltage Feedback vs. Current Feedback Op AmpsPDF, 93 Kb, 档案已发布: Nov 30, 1998
This application report contrasts and compares the characteristics and capabilities of voltage and current feedback operational amplifiers. The report also points out the many similarities between the two versions. - Stabilizing Current-Feedback Op Amps While Optimizing Circuit PerformancePDF, 280 Kb, 档案已发布: Apr 28, 2004
Optimizing a circuit design with a current-feedback (CFB) op amp is a relatively straightforward task, once one understands how CFB op amps achieve stability. This application note explains a 2nd-order CFB model so that any designer can better understand the flexibility of the CFB op amp. This report also discusses stability analysis, the effects of parasitic components due to PCBs, optimization - Expanding the usability of current-feedback amplifiersPDF, 215 Kb, 档案已发布: Feb 28, 2005
- Active filters using current-feedback amplifiersPDF, 227 Kb, 档案已发布: Feb 25, 2005
- Wireline Data Transmission and ReceptionPDF, 191 Kb, 档案已发布: Jan 27, 2010
Many types of wires are widely used to transmit data. Specifically, Category 3 and Category 5 (Cat3 and Cat5e, respectively)—also known as unshielded twisted pair or UTP lines—are now recommended for new telephone installations. Coaxial (coax) cables are used to distribute cable television (CATV) signals throughout a home. #12 and #14 American wire gauge (AWG) electric power distribution wire is a - Designing for low distortion with high-speed op ampsPDF, 277 Kb, 档案已发布: Mar 2, 2005
- ADS5500, OPA695: PC Board Layout for Low Distortion High-Speed ADC DriversPDF, 273 Kb, 档案已发布: Apr 22, 2004
Once an analog-to-digital converter (ADC) and a driver/interface have been selected for a given application, the next step to achieving excellent performance is laying out the printed circuit board (PCB) that will support the application. This application report describes several techniques for optimizing a high-speed, 14-bit performance, differential driver PCB layout using a wideband operation - Wideband Complementary Current Output DAC Single-Ended InterfacePDF, 597 Kb, 档案已发布: Jun 21, 2005
High-speed digital-to-analog converters (DACs) most often use a transformer-coupled output stage. In applications where this configuration is not practical, a single op ampdifferential to single-ended stage has often been used. This application note steps through the exact design equations required to achieve gain matching from each output as well as a matched input impedance to each of the DA - Measuring Board Parasitics in High-Speed Analog DesignPDF, 134 Kb, 档案已发布: Jul 7, 2003
Successful circuit designs using high-speed amplifiers can depend upon understanding and identifying parasitic PCB components. Simulating a design while including PCB parasitics can protect against unpleasant production surprises. This application report discusses an easy method for measuring parasitic components in a prototype or final PC board design by using a standard oscilloscope and low freq - Noise Analysis for High Speed Op Amps (Rev. A)PDF, 256 Kb, 修订版: A, 档案已发布: Jan 17, 2005
As system bandwidths have increased an accurate estimate of the noise contribution for each element in the signal channel has become increasingly important. Many designers are not however particularly comfortable with the calculations required to predict the total noise for an op amp or in the conversions between the different descriptions of noise. Considerable inconsistency between manufactu
模型线
系列: OPA695 (10)
制造商分类
- Semiconductors > Amplifiers > Operational Amplifiers (Op Amps) > High-Speed Op Amps (>=50MHz)