MCP6L1 operational amplifier (op amp) has a gain bandwidth product of 2.8 MHz with low typical operating current of 200uA and an offset voltage that is 1 mV (typ)
页数 / 页
36 /7 — MCP6L1/1R/2/4. Note:. 3.0. A 60. 2.5. oom. V 50. adr. /µs. 2.0. t (. e …
文件格式/大小
PDF / 1.5 Mb
文件语言
英语
MCP6L1/1R/2/4. Note:. 3.0. A 60. 2.5. oom. V 50. adr. /µs. 2.0. t (. e (V. rren. 1.5. u 30. 1.0. f O. lew Rat. p 20. S 0.5. atio o. Out 10. 0.0. -50. -25. 100. 125. 1.E. 1 -04
MCP6L1/1R/2/4Note: Unless otherwise indicated, TA = +25°C, VDD = +5.0V, VSS = GND, VCM = VSS, VOUT = VDD/2, VL = VDD/2, RL = 10 kto VL and CL = 60 pF. 703.0) VDD – VOH A 60 IOUT 2.5oom/m) Falling Edge V 50adrm/µse2.0t ( Rising Edge H40e (Vutrren V 1.5 OL – VSS tpu 30u -IOUT C1.0f Outlew Ratp 20S 0.5atio oOut 10Rto0.00-50-2502550751001251.E1 -0400µ1.E-031m1.E-10 02mOutput Current Magnitude (A)Ambient Temperature (°C)FIGURE 2-13: Ratio of Output Voltage FIGURE 2-16: Slew Rate vs. Ambient Headroom to Output Current vs. Output Current. Temperature. 2.5810 G = +1 V/V ) V P DD = 5.5V 2.56iv)P-/d 2.54Vg (Vmin VDD = 2.7V 2.52w(20 e12.50age Sltaglt o2.48o t Vt V2.46u tptpu2.44OuOu 0.12.4210k100k1M0.E+001.E-062.E-063.E-064.E-065.E-066.E-067.E-068.E-069.E-061.E-051.E+041.E+051.E+06Time (1 µs/div)Frequency (Hz)FIGURE 2-14: Small Signal, Non-Inverting FIGURE 2-17: Output Voltage Swing vs. Pulse Response. Frequency. 5.0 G = +1 V/V 4.5) 4.0 (V 3.5e 3.0ltag o 2.52.0tput V 1.5u O 1.00.5 0.0 0.E+001.E-062. E-063.E-064.E-065. E-066.E-067. E-068.E -069.E-061. E-05Time (1 µs/div)FIGURE 2-15: Large Signal, Non-Inverting Pulse Response. 2009-2012 Microchip Technology Inc. DS22135C-page 7 Document Outline MCP6L1/1R/2/4 - 2.8 MHz, 200 μA Op Amps 1.0 Electrical Characteristics 1.1 Absolute Maximum Ratings † 1.2 Specifications TABLE 1-1: DC Electrical Specifications TABLE 1-2: AC Electrical Specifications TABLE 1-3: Temperature Specifications 1.3 Test Circuit FIGURE 1-1: AC and DC Test Circuit for Most Specifications. 2.0 Typical Performance Curves FIGURE 2-1: Input Offset Voltage vs. Common-Mode Input Voltage at VDD = 2.7V. FIGURE 2-2: Input Offset Voltage vs. Common-Mode Input Voltage at VDD = 5.5V. FIGURE 2-3: Input Offset Voltage vs. Ambient Temperature. FIGURE 2-4: Input Common-Mode Range Voltage vs. Ambient Temperature. FIGURE 2-5: CMRR, PSRR vs. Ambient Temperature. FIGURE 2-6: CMRR, PSRR vs. Frequency. FIGURE 2-7: Measured Input Current vs. Input Voltage (below VSS). FIGURE 2-8: Open-Loop Gain, Phase vs. Frequency. FIGURE 2-9: Input Noise Voltage Density vs. Frequency. FIGURE 2-10: The MCP6L1/1R/2/4 Show No Phase Reversal. FIGURE 2-11: Quiescent Current vs. Power Supply Voltage. FIGURE 2-12: Output Short Circuit Current vs. Power Supply Voltage. FIGURE 2-13: Ratio of Output Voltage Headroom to Output Current vs. Output Current. FIGURE 2-14: Small Signal, Non-Inverting Pulse Response. FIGURE 2-15: Large Signal, Non-Inverting Pulse Response. FIGURE 2-16: Slew Rate vs. Ambient Temperature. FIGURE 2-17: Output Voltage Swing vs. Frequency. 3.0 Pin Descriptions TABLE 3-1: Pin Function Table 3.1 Analog Outputs 3.2 Analog Inputs 3.3 Power Supply Pins 4.0 Application Information 4.1 Inputs FIGURE 4-1: Protecting the Analog Inputs. FIGURE 4-2: Unity Gain Buffer has a Limited VOUT Range. 4.2 Rail-to-Rail Output 4.3 Capacitive Loads FIGURE 4-3: Output Resistor, RISO, Stabilizes Large Capacitive Loads. 4.4 Supply Bypass 4.5 Unused Op Amps FIGURE 4-4: Unused Op Amps. 4.6 PCB Surface Leakage FIGURE 4-5: Example Guard Ring Layout. 4.7 Application Circuits FIGURE 4-6: Sallen Key Topology. FIGURE 4-7: Multiple Feedback Topology. 5.0 Design Aids 5.1 SPICE Macro Model 5.2 FilterLab® Software 5.3 Microchip Advanced Part Selector (MAPS) 5.4 Analog Demonstration and Evaluation Boards 5.5 Application Notes 6.0 Packaging Information 6.1 Package Marking Information Appendix A: Revision History Product Identification System Worldwide Sales and Service