Datasheet MCP4902, MCP4912, MCP4922 (Microchip) - 10

制造商Microchip
描述8/10/12-Bit Dual Voltage Output Digital-to-Analog Converter with SPI Interface
页数 / 页48 / 10 — MCP4902/4912/4922. Note:. 2.5. 1.5. INL (LSB). 0.5. Absolute INL (LSB). …
文件格式/大小PDF / 3.8 Mb
文件语言英语

MCP4902/4912/4922. Note:. 2.5. 1.5. INL (LSB). 0.5. Absolute INL (LSB). -40. -20. 100. 120. 1024. 2048. 3072. 4096. Ambient Temperature (ºC)

MCP4902/4912/4922 Note: 2.5 1.5 INL (LSB) 0.5 Absolute INL (LSB) -40 -20 100 120 1024 2048 3072 4096 Ambient Temperature (ºC)

该数据表的模型线

文件文字版本

link to page 10
MCP4902/4912/4922 Note:
Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V, VREF = 2.048V, Gain = 2x, RL = 5 k, CL = 100 pF.
2.5 2 2 0 1.5 -2 1 INL (LSB) -4 0.5 Absolute INL (LSB) 0 -6 -40 -20 0 20 40 60 80 100 120 0 1024 2048 3072 4096 Ambient Temperature (ºC) Code (Decimal) FIGURE 2-7:
Absolute INL vs.
FIGURE 2-10:
INL vs. Code (MCP4922). Temperature (MCP4922).
Note:
Single device graph (Figure 2-10) for illustration of 64 code effect.
3 0.2 Temp = - 40oC to +125oC 2.5 2 0.1 ) B 1.5 S L 0 ( L 1 DN Absolute INL (LSB) 0.5 -0.1 0 1 2 3 4 5 -0.2 0 128 256 384 512 640 768 896 1024 Voltage Reference (V) Code FIGURE 2-8:
Absolute INL vs. VREF
FIGURE 2-11:
DNL vs. Code and (MCP4922). Temperature (MCP4912).
3 VREF 1.5 2 1 2 3 4 5.5 1 0.5 85oC 0 ) B -0.5 S -1 (L INL (LSB) L -1.5 -2 IN 25oC -3 -2.5 - 40oC 125oC -4 0 1024 2048 3072 4096 -3.5 Code (Decimal) 0 128 256 384 512 640 768 896 1024 Code FIGURE 2-9:
INL vs. Code and VREF
FIGURE 2-12:
INL vs. Code and (MCP4922). Temperature (MCP4912). DS22250A-page 10  2010 Microchip Technology Inc. Document Outline 1.0 Electrical Characteristics FIGURE 1-1: SPI Input Timing Data. 2.0 Typical Performance Curves FIGURE 2-1: DNL vs. Code (MCP4922). FIGURE 2-2: DNL vs. Code and Temperature (MCP4922). FIGURE 2-3: DNL vs. Code and VREF, Gain = 1 (MCP4922). FIGURE 2-4: Absolute DNL vs. Temperature (MCP4922). FIGURE 2-5: Absolute DNL vs. Voltage Reference (MCP4922). FIGURE 2-6: INL vs. Code and Temperature (MCP4922). FIGURE 2-7: Absolute INL vs. Temperature (MCP4922). FIGURE 2-8: Absolute INL vs. VREF (MCP4922). FIGURE 2-9: INL vs. Code and VREF (MCP4922). FIGURE 2-10: INL vs. Code (MCP4922). FIGURE 2-11: DNL vs. Code and Temperature (MCP4912). FIGURE 2-12: INL vs. Code and Temperature (MCP4912). FIGURE 2-13: DNL vs. Code and Temperature (MCP4902). FIGURE 2-14: INL vs. Code and Temperature (MCP4902). FIGURE 2-15: IDD vs. Temperature and VDD. FIGURE 2-16: IDD Histogram (VDD = 2.7V). FIGURE 2-17: IDD Histogram (VDD = 5.0V). FIGURE 2-18: Hardware Shutdown Current vs. Ambient Temperature and VDD. FIGURE 2-19: Software Shutdown Current vs. Ambient Temperature and VDD. FIGURE 2-20: Offset Error vs. Ambient Temperature and VDD. FIGURE 2-21: Gain Error vs. Ambient Temperature and VDD. FIGURE 2-22: VIN High Threshold vs Ambient Temperature and VDD. FIGURE 2-23: VIN Low Threshold vs Ambient Temperature and VDD. FIGURE 2-24: Input Hysteresis vs. Ambient Temperature and VDD. FIGURE 2-25: VREF Input Impedance vs. Ambient Temperature and VDD. FIGURE 2-26: VOUT High Limit vs. Ambient Temperature and VDD. FIGURE 2-27: VOUT Low Limit vs. Ambient Temperature and VDD. FIGURE 2-28: IOUT High Short vs. Ambient Temperature and VDD. FIGURE 2-29: IOUT vs VOUT. Gain = 1x. FIGURE 2-30: VOUT Rise Time. FIGURE 2-31: VOUT Fall Time. FIGURE 2-32: VOUT Rise Time. FIGURE 2-33: VOUT Rise Time. FIGURE 2-34: VOUT Rise Time Exit Shutdown. FIGURE 2-35: PSRR vs. Frequency. FIGURE 2-36: Multiplier Mode Bandwidth. FIGURE 2-37: -3 db Bandwidth vs. Worst Codes. FIGURE 2-38: Phase Shift. 3.0 Pin Descriptions TABLE 3-1: Pin Function Table 3.1 Supply Voltage Pins (VDD, VSS) 3.2 Chip Select (CS) 3.3 Serial Clock Input (SCK) 3.4 Serial Data Input (SDI) 3.5 Latch DAC Input (LDAC) 3.6 Hardware Shutdown Input (SHDN) 3.7 Analog Outputs (VOUTA, VOUTB) 3.8 Voltage Reference Inputs (VREFA, VREFB) 4.0 General Overview TABLE 4-1: LSb of each device 4.1 DC Accuracy FIGURE 4-1: Example for INL Error. FIGURE 4-2: Example for DNL Accuracy. 4.2 Circuit Descriptions FIGURE 4-3: Typical Transient Response. FIGURE 4-4: Output Stage for Shutdown Mode. 5.0 Serial Interface 5.1 Overview 5.2 Write Command FIGURE 5-1: Write Command for MCP4922 (12-bit DAC). FIGURE 5-2: Write Command for MCP4912 (10-bit DAC). FIGURE 5-3: Write Command for MCP4902 (8-bit DAC). 6.0 Typical Applications 6.1 Digital Interface 6.2 Power Supply Considerations FIGURE 6-1: Typical Connection Diagram. 6.3 Layout Considerations 6.4 Single-Supply Operation 6.5 Bipolar Operation 6.6 Selectable Gain and Offset Bipolar Voltage Output Using a Dual DAC 6.7 Designing a Double-Precision DAC Using a Dual DAC 6.8 Building Programmable Current Source 6.9 Using Multiplier Mode 7.0 Development support 7.1 Evaluation and Demonstration Boards 8.0 Packaging Information 8.1 Package Marking Information Trademarks Worldwide Sales and Service