PRELIMINARYEZ-PD CCG6DF, CCG6SFFigure 3. CCG6SF Power Supply Requirement Block Diagram VBUS_C LD O V DDD VSYS C C 1 C C 2 V5V C ore R egulator V CCD VDDIO 2 x CC GPIO s Core Tx/Rx V SS Table 1. CCG6DF/CCG6SF Power ModesModeDescription Reset Power is Valid and XRES is not asserted. An internal reset source is asserted or Sleep Controller is sequencing the system out of reset. ACTIVE Power is Valid and CPU is executing instructions. This mode includes the critical Type-C power spec requirement. Main regulator and most hard-IP are shut off. DeepSleep regulator powers logic, but only low-frequency clock DEEP SLEEP is available. Document Number: 002-27161 Rev. *E Page 9 of 50 Document Outline EZ-PD CCG6DF, CCG6SF, USB Type-C Port Controller General Description Applications Features USB-PD Type-C Mux Integrated Provider VBUS Load Switch LDO 32-bit MCU Subsystem Integrated Digital Blocks Authentication Clocks and Oscillators Operating Range Hot-Swappable I/Os Packages Logic Block Diagram CCG6DF/CCG6SF Functional Diagram Contents Functional Overview MCU Subsystem CPU Flash, SROM, and RAM USB-PD Subsystem (SS) USB-PD Physical Layer VCONN FET ADC SBU Pass-Through Switch and USB HS Mux Provider Load Switch Undervoltage and Overvoltage Protection on VBUS High-side Current Sense Amplifier for VBUS VBUS Reverse Current Protection VBUS Short Circuit Protection VBUS Discharge VBUS Regulator Gate Driver for VBUS NFET VBUS Tolerant SBU and CC Lines Serial Communication Block (SCB) Timer, Counter, Pulse-Width Modulator (TCPWM) True Random Number Generator (TRNG) GPIO Interface System Resources Watchdog Timer (WDT) Clock System IMO Clock Source ILO Clock Source Power Pinouts Application Diagrams CCG6DF, CCG6SF Layout Design Guidelines for BGA Package Usage of Via Size of 8-mil drill/16-mil diameter and 10-mil drill/16-mil diameter Layer Stack-up Top Layer Fan Out Via Count for GND Pads Via Count for Provider Pads High-Speed (DP_SYS, DM_SYS) USB Connections CC Connections CC lines for CCG6DF/CCG6SF devices carry ~500-mA current. In the top layer, two CC pads are shorted using 0.2mm trace width and connected to other layers through one via. The capacitors are placed on bottom layer and are routed to the Type-C Connecto... Rsense and Capacitor Connections for Provider VBUS The differential signal from Rsense should be length matched. The capacitor for Provider VBUS should be as close as possible to the Rsense and connected using copper shape. Figure 19 and Figure 20 show routing for Rsense. Trace Width Details for Critical Signals VDDIO, VCCD, VSYS, and VDDD Connections Figure 21 and Figure 22 show how the VDDIO, VDDD, VSYS, and VCCD signals get routed amongst the top and bottom layers. Capacitor Connections for CC Lines and Bypass Capacitors for VDDIO, VDDD, VCCD, and VSYS Pins Figure 23 shows how the relevant capacitors can be placed for via sizes of 8-mil drill, 16-mil diameter or 10-mil drill, 16-mil diameter. Electrical Specifications Absolute Maximum Ratings Device-Level Specifications DC Specifications CPU GPIO XRES Digital Peripherals Pulse Width Modulation (PWM) for GPIO Pins I2C UART SPI Memory System Resources Power-on-Reset (POR) with Brown Out SWD Interface Internal Main Oscillator Internal Low-speed Oscillator PD Analog-to-Digital Converter VSYS Switch CSA VBUS UV/OV Provider Side RCP SBU Switch DP/DM Switch VCONN Switch VBUS Ordering Information Ordering Code Definitions Packaging Acronyms Document Conventions Units of Measure References and Links to Applications Collateral Knowledge Base Articles Application Notes Reference Designs Kits Datasheets Document History Page Sales, Solutions, and Legal Information Worldwide Sales and Design Support Products PSoC® Solutions Cypress Developer Community Technical Support