数据表
更多
Only-Datasheet.com
关于我们
合作
广告
联络人
en - English
ru - Русский
de - Deutsch
es - Espanol
搜索
数据表
微控制器(MCU)
Datasheets - 微控制器(MCU) - 4
小节: "
微控制器(MCU)
"
半导体类
集成电路-IC
控制器与处理器
微控制器(MCU)
制造商
Aeroflex
Amulet Technologies
Analog Devices
Atmel
Cirrus Logic
Complementary Technologies
Cyan
Cypress
Energy Micro
Epson
Fairchild
Freescale
Fujitsu
GigaDevice
HexWax
Holtek
Infineon
Jennic
Maxim
Microchip
Microcomputers Systems Components
National Semiconductor
NEC
NXP
OKI
ON Semiconductor
Parallax
Ramtron
Raspberry Pi
Redpine Signals
Renesas
Sharp
Silicon Laboratories
Silicon Labs
SONiX Technology
STMicroelectronics
Texas Instruments
Toshiba
Wiznet
Zilog
Микрон
搜索结果:
44,746
输出量:
61-80
视图:
清单
/
图片
PIC16LF627-04/P — Datasheet Microchip
微控制器(MCU)
Microchip
PIC16F627
PIC16LF627-04/P
基于闪存的 8 位 CMOS 微控制器 PIC16F62X 系列的高性能可归功于 RISC 微处理器中常见的许多架构特性。首先,PIC16F62X 使用哈佛架构,其中程序和数据使用单独的总线从单独的存储器访问。与从同一内存中获取程序和数据的传统冯诺依曼架构相比,这提高了带宽。 将程序和数据存储器分开进一步允许指令的大小不同于 8 位宽数据字。指令操作码为 14 位宽,因此可以使用所有单字指令。一个 14 位宽的程序存储器访问总线在一个周期内获取一条 14 ...
PIC16F627-20/SO — Datasheet Microchip
微控制器(MCU)
Microchip
PIC16F627
PIC16F627-20/SO
基于闪存的 8 位 CMOS 微控制器 PIC16F62X 系列的高性能可归功于 RISC 微处理器中常见的许多架构特性。首先,PIC16F62X 使用哈佛架构,其中程序和数据使用单独的总线从单独的存储器访问。与从同一内存中获取程序和数据的传统冯诺依曼架构相比,这提高了带宽。 将程序和数据存储器分开进一步允许指令的大小不同于 8 位宽数据字。指令操作码为 14 位宽,因此可以使用所有单字指令。一个 14 位宽的程序存储器访问总线在一个周期内获取一条 14 ...
PIC16F627-04E/SO — Datasheet Microchip
微控制器(MCU)
Microchip
PIC16F627
PIC16F627-04E/SO
基于闪存的 8 位 CMOS 微控制器 PIC16F62X 系列的高性能可归功于 RISC 微处理器中常见的许多架构特性。首先,PIC16F62X 使用哈佛架构,其中程序和数据使用单独的总线从单独的存储器访问。与从同一内存中获取程序和数据的传统冯诺依曼架构相比,这提高了带宽。 将程序和数据存储器分开进一步允许指令的大小不同于 8 位宽数据字。指令操作码为 14 位宽,因此可以使用所有单字指令。一个 14 位宽的程序存储器访问总线在一个周期内获取一条 14 ...
PIC16F627T-04I/SO — Datasheet Microchip
微控制器(MCU)
Microchip
PIC16F627
PIC16F627T-04I/SO
基于闪存的 8 位 CMOS 微控制器 PIC16F62X 系列的高性能可归功于 RISC 微处理器中常见的许多架构特性。首先,PIC16F62X 使用哈佛架构,其中程序和数据使用单独的总线从单独的存储器访问。与从同一内存中获取程序和数据的传统冯诺依曼架构相比,这提高了带宽。 将程序和数据存储器分开进一步允许指令的大小不同于 8 位宽数据字。指令操作码为 14 位宽,因此可以使用所有单字指令。一个 14 位宽的程序存储器访问总线在一个周期内获取一条 14 ...
PIC16LF627-04/SS — Datasheet Microchip
微控制器(MCU)
Microchip
PIC16F627
PIC16LF627-04/SS
基于闪存的 8 位 CMOS 微控制器 PIC16F62X 系列的高性能可归功于 RISC 微处理器中常见的许多架构特性。首先,PIC16F62X 使用哈佛架构,其中程序和数据使用单独的总线从单独的存储器访问。与从同一内存中获取程序和数据的传统冯诺依曼架构相比,这提高了带宽。 将程序和数据存储器分开进一步允许指令的大小不同于 8 位宽数据字。指令操作码为 14 位宽,因此可以使用所有单字指令。一个 14 位宽的程序存储器访问总线在一个周期内获取一条 14 ...
PIC16F627-20E/SO — Datasheet Microchip
微控制器(MCU)
Microchip
PIC16F627
PIC16F627-20E/SO
基于闪存的 8 位 CMOS 微控制器 PIC16F62X 系列的高性能可归功于 RISC 微处理器中常见的许多架构特性。首先,PIC16F62X 使用哈佛架构,其中程序和数据使用单独的总线从单独的存储器访问。与从同一内存中获取程序和数据的传统冯诺依曼架构相比,这提高了带宽。 将程序和数据存储器分开进一步允许指令的大小不同于 8 位宽数据字。指令操作码为 14 位宽,因此可以使用所有单字指令。一个 14 位宽的程序存储器访问总线在一个周期内获取一条 14 ...
PIC16LF627-04/SO — Datasheet Microchip
微控制器(MCU)
Microchip
PIC16F627
PIC16LF627-04/SO
基于闪存的 8 位 CMOS 微控制器 PIC16F62X 系列的高性能可归功于 RISC 微处理器中常见的许多架构特性。首先,PIC16F62X 使用哈佛架构,其中程序和数据使用单独的总线从单独的存储器访问。与从同一内存中获取程序和数据的传统冯诺依曼架构相比,这提高了带宽。 将程序和数据存储器分开进一步允许指令的大小不同于 8 位宽数据字。指令操作码为 14 位宽,因此可以使用所有单字指令。一个 14 位宽的程序存储器访问总线在一个周期内获取一条 14 ...
PIC16LF627-04I/SS — Datasheet Microchip
微控制器(MCU)
Microchip
PIC16F627
PIC16LF627-04I/SS
基于闪存的 8 位 CMOS 微控制器 PIC16F62X 系列的高性能可归功于 RISC 微处理器中常见的许多架构特性。首先,PIC16F62X 使用哈佛架构,其中程序和数据使用单独的总线从单独的存储器访问。与从同一内存中获取程序和数据的传统冯诺依曼架构相比,这提高了带宽。 将程序和数据存储器分开进一步允许指令的大小不同于 8 位宽数据字。指令操作码为 14 位宽,因此可以使用所有单字指令。一个 14 位宽的程序存储器访问总线在一个周期内获取一条 14 ...
PIC16F628-04/P — Datasheet Microchip
微控制器(MCU)
Microchip
PIC16F628
PIC16F628-04/P
基于闪存的 8 位 CMOS 微控制器 PIC16F62X 系列的高性能可归功于 RISC 微处理器中常见的许多架构特性。首先,PIC16F62X 使用哈佛架构,其中程序和数据使用单独的总线从单独的存储器访问。与从同一内存中获取程序和数据的传统冯诺依曼架构相比,这提高了带宽。 将程序和数据存储器分开进一步允许指令的大小不同于 8 位宽数据字。指令操作码为 14 位宽,因此可以使用所有单字指令。一个 14 位宽的程序存储器访问总线在一个周期内获取一条 14 ...
PIC16F628-04I/P — Datasheet Microchip
微控制器(MCU)
Microchip
PIC16F628
PIC16F628-04I/P
基于闪存的 8 位 CMOS 微控制器 PIC16F62X 系列的高性能可归功于 RISC 微处理器中常见的许多架构特性。首先,PIC16F62X 使用哈佛架构,其中程序和数据使用单独的总线从单独的存储器访问。与从同一内存中获取程序和数据的传统冯诺依曼架构相比,这提高了带宽。 将程序和数据存储器分开进一步允许指令的大小不同于 8 位宽数据字。指令操作码为 14 位宽,因此可以使用所有单字指令。一个 14 位宽的程序存储器访问总线在一个周期内获取一条 14 ...
PIC16F628-04I/SO — Datasheet Microchip
微控制器(MCU)
Microchip
PIC16F628
PIC16F628-04I/SO
基于闪存的 8 位 CMOS 微控制器 PIC16F62X 系列的高性能可归功于 RISC 微处理器中常见的许多架构特性。首先,PIC16F62X 使用哈佛架构,其中程序和数据使用单独的总线从单独的存储器访问。与从同一内存中获取程序和数据的传统冯诺依曼架构相比,这提高了带宽。 将程序和数据存储器分开进一步允许指令的大小不同于 8 位宽数据字。指令操作码为 14 位宽,因此可以使用所有单字指令。一个 14 位宽的程序存储器访问总线在一个周期内获取一条 14 ...
PIC16F628-04/SO — Datasheet Microchip
微控制器(MCU)
Microchip
PIC16F628
PIC16F628-04/SO
基于闪存的 8 位 CMOS 微控制器 PIC16F62X 系列的高性能可归功于 RISC 微处理器中常见的许多架构特性。首先,PIC16F62X 使用哈佛架构,其中程序和数据使用单独的总线从单独的存储器访问。与从同一内存中获取程序和数据的传统冯诺依曼架构相比,这提高了带宽。 将程序和数据存储器分开进一步允许指令的大小不同于 8 位宽数据字。指令操作码为 14 位宽,因此可以使用所有单字指令。一个 14 位宽的程序存储器访问总线在一个周期内获取一条 14 ...
PIC16F628-04E/P — Datasheet Microchip
微控制器(MCU)
Microchip
PIC16F628
PIC16F628-04E/P
基于闪存的 8 位 CMOS 微控制器 PIC16F62X 系列的高性能可归功于 RISC 微处理器中常见的许多架构特性。首先,PIC16F62X 使用哈佛架构,其中程序和数据使用单独的总线从单独的存储器访问。与从同一内存中获取程序和数据的传统冯诺依曼架构相比,这提高了带宽。 将程序和数据存储器分开进一步允许指令的大小不同于 8 位宽数据字。指令操作码为 14 位宽,因此可以使用所有单字指令。一个 14 位宽的程序存储器访问总线在一个周期内获取一条 14 ...
PIC16F628-04E/SS — Datasheet Microchip
微控制器(MCU)
Microchip
PIC16F628
PIC16F628-04E/SS
基于闪存的 8 位 CMOS 微控制器 PIC16F62X 系列的高性能可归功于 RISC 微处理器中常见的许多架构特性。首先,PIC16F62X 使用哈佛架构,其中程序和数据使用单独的总线从单独的存储器访问。与从同一内存中获取程序和数据的传统冯诺依曼架构相比,这提高了带宽。 将程序和数据存储器分开进一步允许指令的大小不同于 8 位宽数据字。指令操作码为 14 位宽,因此可以使用所有单字指令。一个 14 位宽的程序存储器访问总线在一个周期内获取一条 14 ...
PIC16F628-04/SS — Datasheet Microchip
微控制器(MCU)
Microchip
PIC16F628
PIC16F628-04/SS
基于闪存的 8 位 CMOS 微控制器 PIC16F62X 系列的高性能可归功于 RISC 微处理器中常见的许多架构特性。首先,PIC16F62X 使用哈佛架构,其中程序和数据使用单独的总线从单独的存储器访问。与从同一内存中获取程序和数据的传统冯诺依曼架构相比,这提高了带宽。 将程序和数据存储器分开进一步允许指令的大小不同于 8 位宽数据字。指令操作码为 14 位宽,因此可以使用所有单字指令。一个 14 位宽的程序存储器访问总线在一个周期内获取一条 14 ...
PIC16F628-04E/SO — Datasheet Microchip
微控制器(MCU)
Microchip
PIC16F628
PIC16F628-04E/SO
基于闪存的 8 位 CMOS 微控制器 PIC16F62X 系列的高性能可归功于 RISC 微处理器中常见的许多架构特性。首先,PIC16F62X 使用哈佛架构,其中程序和数据使用单独的总线从单独的存储器访问。与从同一内存中获取程序和数据的传统冯诺依曼架构相比,这提高了带宽。 将程序和数据存储器分开进一步允许指令的大小不同于 8 位宽数据字。指令操作码为 14 位宽,因此可以使用所有单字指令。一个 14 位宽的程序存储器访问总线在一个周期内获取一条 14 ...
PIC16F628 — Datasheet Microchip
微控制器(MCU)
Microchip
PIC16F628
基于闪存的 8 位 CMOS 微控制器 PIC16F62X 系列的高性能可归功于 RISC 微处理器中常见的许多架构特性。首先,PIC16F62X 使用哈佛架构,其中程序和数据使用单独的总线从单独的存储器访问。与从同一内存中获取程序和数据的传统冯诺依曼架构相比,这提高了带宽。 将程序和数据存储器分开进一步允许指令的大小不同于 8 位宽数据字。指令操作码为 14 位宽,因此可以使用所有单字指令。一个 14 位宽的程序存储器访问总线在一个周期内获取一条 14 ...
PIC16F628T-20I/SO — Datasheet Microchip
微控制器(MCU)
Microchip
PIC16F628
PIC16F628T-20I/SO
基于闪存的 8 位 CMOS 微控制器 PIC16F62X 系列的高性能可归功于 RISC 微处理器中常见的许多架构特性。首先,PIC16F62X 使用哈佛架构,其中程序和数据使用单独的总线从单独的存储器访问。与从同一内存中获取程序和数据的传统冯诺依曼架构相比,这提高了带宽。 将程序和数据存储器分开进一步允许指令的大小不同于 8 位宽数据字。指令操作码为 14 位宽,因此可以使用所有单字指令。一个 14 位宽的程序存储器访问总线在一个周期内获取一条 14 ...
PIC16F628-20/P — Datasheet Microchip
微控制器(MCU)
Microchip
PIC16F628
PIC16F628-20/P
基于闪存的 8 位 CMOS 微控制器 PIC16F62X 系列的高性能可归功于 RISC 微处理器中常见的许多架构特性。首先,PIC16F62X 使用哈佛架构,其中程序和数据使用单独的总线从单独的存储器访问。与从同一内存中获取程序和数据的传统冯诺依曼架构相比,这提高了带宽。 将程序和数据存储器分开进一步允许指令的大小不同于 8 位宽数据字。指令操作码为 14 位宽,因此可以使用所有单字指令。一个 14 位宽的程序存储器访问总线在一个周期内获取一条 14 ...
PIC16F628-20I/P — Datasheet Microchip
微控制器(MCU)
Microchip
PIC16F628
PIC16F628-20I/P
基于闪存的 8 位 CMOS 微控制器 PIC16F62X 系列的高性能可归功于 RISC 微处理器中常见的许多架构特性。首先,PIC16F62X 使用哈佛架构,其中程序和数据使用单独的总线从单独的存储器访问。与从同一内存中获取程序和数据的传统冯诺依曼架构相比,这提高了带宽。 将程序和数据存储器分开进一步允许指令的大小不同于 8 位宽数据字。指令操作码为 14 位宽,因此可以使用所有单字指令。一个 14 位宽的程序存储器访问总线在一个周期内获取一条 14 ...
1
...
3
4
5
...
10
联络人
隐私政策
更改隐私设置